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Global Wind Fields
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Oceans and the Carbon Cycle

e Separation of upper ocean and deep ocean

— Total CO, and alkalinity reduced by organism
uptake In upper ocean

— Chemical gradients maintained by:
e Downward flux of sinking biogenic particles

e Upward mixing and advection of nutrient, carbon,
and alkalinity-enriched deep waters

— Sinking particles are dissolved or
remineralized in deep ocean, thus closing cycle
 Atmospheric pCO, about 3-4 times lower
than If ocean were completely mixed
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Measurements

Locations of Ship-based CO




Box Model Assumptions

e All nutrients move at Redfield ratios
— Includes uptake and export

e Physical processes are steady

— Do not need to consider episodic processes
 No external changes In fluxes

- No N, fixation etc.

— No luxury consumption

e \We do not need to know detalls of
boxes

— Everything stable and in equilibrium



Are these reasonable assumptions?

e Changes in ecosystem structure
- Export/production
— Shifts In nutrient uptake ratios

— Shift from organic/silica-walled organisms
to carbonate

- Changes in midwater ecosystems
e Changes in physical processes

- Deep water formation, sea ice

— Thermohaline circulation

e Interaction of ecology and physics



What i1s the role of ocean biota?

e Cannot react directly to increase In
atmospheric CO,

— Ocean ecosystems not limited by carbon

e Indirect response Is more complicated

— Do ecosystems always process nutrients in
the same way?

— Do physical processes stay the same?
— Do nutrient ratios stay the same?
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Estimate of carbon flux based on model of Laws
et al. (2000) using SeaWIFS data




Variations in the Position of the Polar
Front, 1987-1998

Moore et
al. (2000)




SST and

chlorophyll in the
US JGOFS

region
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Ice Edge and Chlorophyll - Dec. 1997
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SeaWIiFS-
estimated
primary
productivity
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Satellite-based Estimates of Primary

Productivity
Study 50°-90° S
Longhurst et al. (1995) 4 Pg C/yr

Behrenfeld and Falkowski (1997) 4.8
corrected by Arrigo et al.

Antoine et al. (1996) 5.9
Arrigo et al. (1998) 3.2-44
Moore and Abbott (2000) - 2.9

SeaWIFS




The lron Hypothesis

e Ocean productivity largely limited by iron
e High nutrient, low chlorophyll (HNLC)
regions

— Equatorial Pacific, Subarctic North Pacific,
Southern Ocean

— Underutilized nutrients represent possible
sink of CO,

e “Glve me enough iron and | can create an
Ice age”



Productivity by Ecological Region
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Ocean Weekly Productivity Index Inputs

MODIS SST 11-12 um Day FNMOC Mixed Layer Depth



L-4 Weekly Ocean Productivity Indices

Number of pixels Number of granules

Test - Unvalidated, for Week 233, 2000, 36 km




Photon Pathways
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Fluorescence and Productivity

e F=[chl] *(PAR X a*) * @
where F = fluorescence
[chl] = chlorophyll concentration

PAR = photosynthetically available
radiation

a” = chlorophyll specific absorption
@- = fluorescence quantum yield

 We can rearrange as F/[chl] to estimate @-

 Next-generation ocean color sensors will
measure fluorescence
- MODIS, MERIS, and GLI




Fluorescence/Chlorophyll
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Photosynthetic Capacity vs. FLH/chlorophyll
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MODIS chl, mg m3

MODIS FLH and Chlorophyll
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How Can the Fluorescence Signal be Used?

e Field and laboratory measurements
suggest that there Is useful
Information

e Challenge is to understand relationship
between F/[chl] and photosynthetic
potential
— Time and space scales
— Unlikely that instantaneous measurements

will work

 Chemostat studies of phytoplankton
response



Surface Chlorophyll at the Polar Front
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Pigments Assoclated with Diatoms

Fucoxanthin distribution
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Pigments Associated with Prymnesiophytes

Hes distribution
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Red tide (black) and 7richodesmium (aqua),
29 September 2000



Putting It all together

Strong biological/physical coupling at
mesoscales
Need for long time series

Good prospects for improving estimates
of primary productivity

But satellites will always “miss” some
scales and some processes

Models and field measurements are
critical components as well



Future Directions

 Programs such as CLIVAR, GODAE, and
GOOS emphasize an operational strategy

e But programs such as JGOFS have shown
that much research remains, especially In
ecology and physical coupling
— What processes need to be included?

- What scales do we need to observe?
- How do we parameterize for models?

e Are ocean sciences ready for monitoring?

- We do need long-term, carefully-calibrated
series




CalCOFI1 Sampling Grid
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Despite 40 years’
of sampling,
CalCOFI missed
one of the

dominant features
of the California
Current!




Summary

 Changes in ocean’s role in global carbon
cycle a key element of the US Carbon
Cycle Science Plan

- Importance of both physical and biological
processes

 Need for better time/space dependent
estimates of primary productivity

« MODIS will play a critical role In this
research



